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1.0 INTRODUCTION

The natural silty sand at the Association of American Railroads (AAR), Transportation Test Center
(TTC), Pueblo, Colorado, is an excellent subgrade soil for track support. As a consequence, the
substructure conditions at the Facility for Accelerated Service Testing (FAST) track does not
represent the variability of subgrade conditions that are encountered in normal revenue track. Thus
tests conducted with track supported on the natural subgrade at FAST do not give an indication of

the effects of low quality subgrade on track performance.

The principal objective of the Heavy Axle Load (HAL) program on the High Tonnage Loop
(HTL) is to determine the change in track deterioration rate and the costs which accompany a 20
percent increase in static axle loads. A plan was adopted by AAR to create a test site with a low
stiffness subgrade to provide a single variation in the subgrade conditions for the HAL program. To
evaluate the feasibility of this plan, a Trial Low Track Modulus (TLTM) test site 30 meters (100 ft)
long was constructed. A stiffness simulating the lower end of acceptable mainline track (not a worst

case situation) was targeted for this project.

The track performance with the TLTM and an equivalent length of track on the natural
subgrade was monitored. Although the purpose of the TLTM was to determine the feasibility of
constructing a longer (180 m or 600 ft) Low Track Modulus (LTM) test site, valuable results became
available from the TLTM providing an indication of the influence of substructure conditions on track

maintenance requirements.

2.0 OBJECTIVES

The objectives of this report are to describe the procedures followed in the TLTM investigation, and

to document the results so that they may be used by interested persons.




3.0 PROCEDURES

3.1 LOW TRACK MODULUS DESIGN

The basic concept adopted for the LTM test section was to excavate a trench in the natural subgrade

under a length of track and fill it with a low stiffness clay. The clay subgrade was covered by a layer

of subballast to support the superstructure and ballast. The clay stiffness and layer depth was

selected in combination with the properties of the superstructure and remaining substructure to

provide a track modulus of substantially lower value than represented by the existing FAST track.

Because the existing track modulus was typically 20.7 to 41.4 MPa (3,000 to 6,000 psi) with

wood ties, the design track modulus for the LTM was targeted at 13.8 MPa (2,000 psi) maximum.

Other specified design criteria were as follows:

1.

Locate the test site in Section 29 of the FAST loop. This section provides tangent
track with a parallel bypass track (Figure 1).

Use 65.5 to 67.6 kg/m (132 to 136 1b/yd) rail.

Use 175 mm (7 in.) high x 225 mm (9 in.) wide x 2.6 m (8 ft 6 in.) long wood ties

with 350 mm (14 in.) tie plates and cut spikes. Box anchor every other tie.

Use durable crushed rock ballast placed 300 mm (12 in.) depth below bottom of the
tie with a 150 mm (6 in.) shoulder width, and a shoulder slope of two horizontal to
one vertical (2H:1V).




5. Use a broadly graded gravelly sand material for the subballast (particle size ranging
approximately between 30 mm and 0.075 mm) previously used at FAST. A
subballast thickness of 150 mm (6 in.) is proposed.

6. The low stiffness clay should have a minimum plasticity index (PI) of 15-20 and a
liquid limit (LL) below about 60-70. Such a soil will give a low resilient modulus
while being relatively insensitive to changes in moisture content. The selected
moisture content for the installed clay layer should be high enough to give a low

modulus, but not so high that excessive track settlement will occur under traffic.

7. The trench depth should be in the range of 1.2 to 2.4 m (4 to 8 ft). The depth should
be the smallest possible to minimize cost, while still providing a substantial track
modulus reduction. The existing subgrade generally has enough cohesion to permit
excavating a trench with vertical walls to a depth of 1.2 to 1.5 m (4 to 5 ft) on a
temporary basis if surcharge is avoided on the ground surface. Greater depths will

require trench side support to meet safety standards.

8. The maximum desired width at top of trench is 4.6 m (15 ft).

9. The wall of the trench should be no closer to the adjacent bypass track than the toe
of the ballast slope or about 2.4 m (8 ft) from the center of the adjacent track. This
is to prevent the low stiffness zone from significantly influencing the settlement of

the bypass track.

10. A means must be provided to maintain reasonably constant moisture conditions in

the clay for a period of 5 to 10 years.

A GEOTRACK analysis was carried out to evaluate the effect of the clay layer on the track
modulus. A resilient modulus of 103.4 to 206.7 MPa (15,000 to 30,000 psi) was assumed for the
natural subgrade, and 20.7 MPa (3,000 psi) was assumed for the clay. The track modulus value



calculated for wood tie track with the existing subgrade was about 42.0 MPa (6,100 psi). The values
with clay layers varying from 1.2 to 2.4 m (4 to 8 ft) are given in Table 1.

Table 1: Track Modulus Estimates
Clay thickness Track modulus
m (ft) MPa E)si)
1.2 (4) 22.1 (3,200)
1.5 (5) 20.0 (2,900)
1.8 (6) 18.6 (2,700)
2.4(8) 17.2 (2,500)

The track modulus only diminishes gradually with depth. Thus considering the trench depth
constraints, and assuming that the clay layer surface is at the existing subgrade surface, a trench
depth of 1.5 m (5 ft) appears to be the best compromise. This should reduce the track modulus to
less than 50 percent of that with the existing subgrade.

Figure 2 shows the cross section of the TLTM substructure. The trench is lined on the sides
and bottom with an impermeable plastic sheet to isolate the clay from the existing subgrade. The
liner was omitted from the top of the clay, however, to avoid creating an unnatural interface with low
friction and potential reinforcement. As a result, water can be expected to enter and leave the clay
through the top boundary. The trench sides were to be inclined on a slope of one horizontal to two
vertical (1H:2V), but this proved difficult to construct with available equipment. Thus the sides
were stepped instead as shown in Figure 2. The main purpose of the slope was to simplify placing

and compacting the clay without disturbing the liner.




An internal drain system for adding water in case of moisture loss was planned. This was

not included in the TLTM because of the short duration of the trial.

3.2 CONSTRUCTION

3.2.1 Site Layout

The TLTM test section was constructed in Section 29 of the HTL (see Figure 1).

The TLTM test section started at tie 405 and ended at tie 484, as indicated in Figure 3. The
ramp into the trench extended from tie 484 to tie 464. A comparison test section on the natural

subgrade extended from tie 309 to 385.

Figure 4 shows a cross section of the TLTM and the natural subgrade test sections, indicating
the main line and the bypass line. The survey extended far enough on both sides to include the
surface drainage conditions. Note that the natural subgrade section had no subballast. Instead the

ballast was placed directly on the subgrade.

3.2.2 Track Components

3.2.2.1 Superstructure

The rail weights changed along the length of the test sites (Figure 5). Starting at tie 484, the rails
consisted of a 65.9 kg/m (133 1b/yd) on the outer leg and a 67.6 kg/m (136 1b/yd) rail on the inner
leg. At tie 357, the outer rail was jointed and for the rest of the natural subgrade site both legs

consisted of 67.6 kg/m rails. An insulated joint was installed at tic 377 in the inner rail.
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At 39.15 MGT (May 28, 1991), a track panel was removed from tie 426 to tie 405 to
construct a cross drain in the clay test section. The track panel was replaced with only 67.6 kg/m
(136 1b/yd) rails. Figure 5 shows the rail weights and joint positions for each test section as well as

the change in superstructure after the drain construction.

Softwood ties with dimensions 175 mm (7 in.) high x 225 mm (9 in.) wide x 2.6 m (8 ft 6
in.) long were used. The ties were creosote treated and alternate ties were fully box-anchored spaced
at 495 mm (19.5 in.) The fastener system was the AREA 355 mm (14 in.) tie plate (Plan No 12)
used on rails with 150 mm (6 in.) base width. The rails were tied down with 2 cut track spikes -- one
on either side of the rail base. The tie plate was tied down with 2 cut track spikes, also one on either

side of the rail.

3.2.2.2 Ballast

Dolomite crushed rock ballast was placed over the subballast with approximately 300 mm (12 in.)
depth below the tie and a 150 mm (6 in.) ballast shoulder sloping 2H:1V. The dolomite ballast
gradation was not determined before testing began. However, an indication of the expected

gradation was obtained from previous FAST ballast tests done on Section 03 by Trevizo.'

A ballast sample was taken from underneath the ties at the end of the experiment (July 1991)
from both test sites. The gradations for these three samples are given in Table 2 and are shown in
Figure 6. The gradation from the previous tests does not appear to be representative of the initial

gradation.




Table 2: Ballast Gradations
Sieve Size Percent Passing
(mm) (in.) Previous Tests Clay Test Natural Subgrade
Site Test Site
63.5 2.5 100 100 100
50.8 2.0 84.8 93.4 94.8
38.1 1.5 674 62.8 63.0
25.4 1.0 33.9 26.8 23.1
19.1 75 17.3 12.5 8.1
12.7 .50 9.0 * *
9.50 375 6.3 4.9 1.0
6.40 250 * 4.3 0.8
4.75 #4 3.9 4.0 0.7
2.00 #10 * 3.2 0.7
180 #80 * 1.5 0.5
.075 #200 1.2 0.7 0.4

* Sieve sizes not used.

The dolomite ballast particle characteristics, as determined during the FAST ballast tests, are
given in Table 3.! Test procedures to determine these material properties are described by Roner and

Selig.? The following definitions are used in these tests:

-- An elongated particle is one where the length/width is more than 1.8. The Elongation

Index is the percentage by weight of elongated particles in a sample.

-- A flaky particle is one in which the thickness/width is less than 0.6. The Flakiness Index
is the percentage by weight of flaky particles in a sample.

-- The shape factor is the ratio of the sum of the longest dimensions to the sum of the least
widths.




Table 3: Ballast Material Properties

Properties Units Values
Elongation Index Dimensionless 46.09
Flakiness Index Dimensionless 15.18
Shape Factor Dimensionless 2.09
Mill Abrasion % loss 8.60
Los Angeles Abrasion % loss 34.1
Soundness of aggregate - Magnesium Sulfate % loss 0.23

- Sodium Sulfate % loss 0.26
Clay Lump and Friable Particles % loss 3.37
Scratch Hardness of Coarse Aggregate % soft particles no loss
Unit Weight kg/m? 1666 (104)

(Ib/cuft)

Based on hand sample examination, the ballast is composed mainly of cryptocrystalline,
massive nonporous siliceous dolomite.! The dolomite is generally very clean and variable colored
pink, gray, red, and pure white, with a small amount of gray quartzite as thin lenses in the dolomite.
The rock may be of low metamorphic grade. A small amount of dark green, well foliated quartz-
chlorite schist, and dark green to black massive basalt is also present in the ballast sample. In

general, ballast particles are angular with minor rounding of edges and corners.

The ballast thickness beneath the ties was measured at various locations along the length of
each test section at the end of the TLTM experiment. Figure 7 shows a plot of the thickness
measurements. The positions of the joints are also shown. The average ballast thickness was 285

mm (11 in.) for the clay section and 300 mm (12 in.) for the natural subgrade section.




3.2.2.3 Subballast

Beneath the ballast was a 150 mm (6 in.) thick subballast layer of well graded sand with silt and

gravel. This subballast was constructed only on the clay test site.

An indication of the subballast gradations was obtained from a sample taken in Section 20
and tested by Adegoke and Selig® and from tests conducted by Thompson.* At the end of the TLTM
experiment, a subballast sample was taken from the clay test site and analyzed by the TTC. The

results are shown in Figure 8 and listed in Table 4.

Other available subballast material properties as obtained by Adegote and Selig®

and by Thompson* are given in Table 5.

Table 4: Subballast Gradations
Sieve Size Percent passing

(mm) (in.) Adegoke and Selig’ Thompson* TTC Sample
254 1.0 93 100 92.6

19.1 0.75 86 82 85.0 |
12.7 0.50 81 * * |
9.50 0.375 * 177 77.3

6.40 0.250 * * 72.7

4,75 #4 72 59 62.9

2.36 #8 61 * 53.0

2.00 #10 58 44 514

0.60 #30 33 * 34.8
0.420 #40 25 27 *
0.180 #80 * * 27.7
0.150 #100 7 8 *
0.075 #200 4 2 11.0

*Sieve sizes not used.
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Table 5: Subballasti’l—aterial Properties

g

 Property Adegoke and Selig’ Thompson*
ASTM Identification Well graded gravelly sand
Unified Classification SwW Non plastic

PI of <0.42 mm size
LL of <0.42 mm size .
Moisture Content 3% to 5%

Resilient Modulus | Equation 1

The subballast resilient modulus is estimated by cyclic triaxial tests to be:*
0.687

E =9%41p | — ’
at P

’ ‘ (1)

where P, = atmospheric pressure = 14.7 psi, and
© =bulk stress= 0, +2 0,

3.2.2.4 Subgrade

The natural subgrade gradations in the vicinity of the test section are shown in Figure 9 and listed
in Table 6, as obtained by Adegoke and Selig,” Thompson; and Stewart The range in clay

subgrade gradations is shown in Figure 10, as obtained by Coleman.® Between 95 percent and 98

percent passed the 0.075 mm (#200) sieve.,

10



Table 6: Natural Subgrade Gradations
Sieve Size Percent Passing

(mm) (in.) Adegoke and Selig® Thompson* | Stewart®

Range of Composite

Borings Sample
4.75 #4 * * 100 96
2.36 #8 * * * *
2.00 #10 98 - 100 97 99 92
1.18 #16 * * 94 86
0.85 #20 91 -97 * * *
0.60 #30 * 83 * *
0.425 #40 74 - 92 77 29 58
0.250 #60 56 - 87 51 * *
0.180 #80 * * * *
0.150 #100 33-80 34 * 17
0.075 #200 17-61 13 0 6

* Sieve sizes not used.

The available natural subgrade material properties, as obtained by Adegoke and Selig,’
Thompson,* and Stewart are given in Table 7. The available clay properties as obtained by

Coleman® and Thompson’ are given in Table 8.

Table 7: Natural Subgrade Material Properties

Property Adegoke and Selig® Thompson* Stewart®

ASTM Identification Sandy Silt or Silty Sand Sandy Silt or
Silty Sand

Unified Classification ML or SM ML or SM
PI 5.9
LL 18.5
Moisture Content 0.3 to 1.2 6to 12
m depth (%)
Moisture Content 1.2 to 3.0 l1to5
m depth (%)
Specific Gravity 2.61
Resilient Modulus Equation 2 Equation 3
Optimum Moisture Content 9.5-10.7
()
Maximum Dry Density, 1,970 (123)
kg/m’ (pcf)
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The natural subgrade resilient is estimated from cyclic triaxial tests, as follows, by

Thompson*

1.083
. :65“[3) ,
a Pa

2
or by Stewart’
E_ =174 Pa( -S—) e
: 3)
Table 8: Clay Subgrade Material Properties
Property Coleman® Thompson’
ASTM Identiﬁcati_on Very plastic clay
Unified Classification CH
PI 45
LL 67
Natural Moisture Content (%) 35
Specific Gravity 2.7
Resilient Modulus Refer to Figure 11
Optimum Moisture Content (%) 22.8
Maximum Dry Density, kg/m? (pcf) 1,472 (91.9)

Figure 11 presents the resilient modulus test results obtained by Thompson’ on the subgrade
clay. The shape of the curves changes with the moisture content, compaction and loading condition,

as described by Selig.®
The unconfined compression strengths for the natural subgrade and for the clay layer are

given as a function of moisture content in Figure 12. The tests were conducted by Stewart® and

Thompson* for the natural subgrade, and by Thompson’ for the clay.
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Two borings, B1 and B2, were made in Section 20 at ties 285 and 917, respectively. Each
hole was located midway between the rails. The holes were advanced by means of a 40 mm (4 in.)
auger. Penetration tests were performed at close intervals. The sampler consisted of a "California"
spoon with outer diameter of 63.5 mm (2.5 in.) and inner diameter of 50.8 (2 in.). The sampler was
driven for 305 mm (1 ft) at each sampling interval by dropping a 65 kg (140 Ib) hammer 457 mm
(18 in.). The blow counts were recorded for each 150 mm (6 in.) penetration. Plots of blow count
(N,), as a function of depth, are shown on the boring logs in Figures 13(a) and (b). Figure 13 also
includes the water content and the visual identifications of each sample. Adegoke and Selig® found
that the natural subgrade is relatively uniform with indications that the silt content increases with

depth and that the moisture content decreases with depth.

Moisture samples taken in the natural subgrade by a hand auger, after the completion of the
TLTM experiment (July 1991), indicated that the average moisture content in the first 1.5 m (5 ft)

was 9.7 percent and that the moisture content decreases with depth.

The moisture content in the clay layer was taken during layer placement with a nuclear gage.
Table 9 lists the tie positions for the measurements and the associated compaction as a percent of
the standard maximum dry density. The depths varied as layers were added. The order listed in
Table 9 corresponded to the order measured. Thus the depths decreased toward the bottom of the

table.

The measurements of percent compaction were used only to confirm that the compacting
effort was adequate. Because most measurements were in the desired range of 90 to 95 percent, the
compaction level is thought to be sufficient. Although the occasional reading is below or above this
level, this is due to the statistical distribution of compaction itself and the variability of the
measuring device. Two consecutive measurements of compaction with the nuclear gage at the same

location may yield very different values.
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Table 9: '"At Construction' Clay Moisture Content
Tie No. Moisture Compaction
(%) (%)
455 293 98.7
435 30.5 100.2
404 30.8 86.9
411 32.8 94.6
430 31.6 86.8
453 30.7 96.6
407 31.8 91.0
423 30.0 96.6
451 27.7 103.7
404 31.7 84.5
430 322 94.4
448 30.8 94.6
414 32.7 97.9
426 342 922
456 30.1 97.6
403 312 95.1
426 313 96.2
408 343 91.0
437 31.7 98.0
459 27.0 98.4

The moisture contents, after TLTM experiment, were measured by taking 25 mm (1 in.) hand
auger samples at selected tie locations every 150 mm (6 in.) in depth. Table 10 lists the average and
range of moisture readings for each tie location. Figure 14 gives an indication of the moisture

content distributions along the length of the sections based on Tables 9 and 10.
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Table 10: "After Construction' Moisture Content
Tie No. Moisture Moisture Content Range
(%o) (%)

464 Clay Subgrade 28.4 24.8 - 30.9
458 Clay Subgrade 28.0 25.2-30.2

" 452 Clay Subgrade 28.6 26.9 - 30.0
| 444 Clay Subgrade 28.9 253-31.1
" 436 Clay Subgrade 28.9 27.1-313
430 Clay Subgrade 29.9 28.0-31.5
413 Clay Subgrade 29.6 28.1-33.2
405 Clay Subgrade 29.8 255-333

381 Natural Subgrade 9.8 73-12.5

3.2.3 Construction Procedure

The clay layer was constructed by removing the existing track and excavating to the trench
dimensions as indicated in Figure 14. The trench bottom was graded and compacted to provide a
firm base. To prevent the clay from losing moisture, the trench was lined with 0.5 mm (0.02 in.)

thick plastic liner on the sides and bottom of the trench.

Prior to construction, the clay was pulverized and brought to a specified moisture content of
30-33 percent. The clay was compacted in layer thicknesses of approximately 200 mm (8 in.) to an

average dry density equal to or exceeding 90 percent ASTM D698 maximum dry density.
With the trench filled with clay, the liner was not folded over the top of the clay layer to
avoid creation of an unnatural interface with low friction. The subballast layer was placed directly

on the clay section and compacted.

The ballast and superstructure were then placed onto the subballast in the clay section and

directly onto the existing subgrade in the control section.
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At the beginning of May 1991 (approximately 35 MGT), water was noticed to be collecting
on top of the clay layer, saturating the subballast from tie 425 to tie 400. The drainage problem was
corrected by installing a sheet of Hydroway edge drain, 300 mm (12 in.) wide and 25 mm (1 in.)
thick, vertically at the top edge of the clay on the field side of the track. The sheet extended from
tie 430 to tie 400 underneath the ballast shoulder. The water was drained out of the Hydroway by

a 50 mm (2 in.) pipe installed at tie 400.

The procedure to install the Hydroway sheet was as follows:

1. The ballast shoulder was removed.
2. A narrow trench was cut at the edge of the clay layer to fit the Hydroway

sheet vertically against the side of the clay and the subballast.

3. A drain pipe was installed.
4, The ballast shoulder was replaced.
5. The track was tamped.

4.0 VERTICAL TRACK STIFFNESS

The vertical track stiffness measurements were done using the equipment as shown in Figure 15.
The load was applied to each rail in four 44.5 kN (10 kips) load increments. The first set of
measurements was taken December 14, 1990, at 22.3 kN (5 kips) load intervals. Each rail was
loaded using two independently controlled hydraulic actuators. The maximum wheel load applied
was 178 kN (40 kips). At each load increment, the track deflection was measured using a digital

level. The level was set up well outside the load influence base of the equipment to ensure accurate

readings.

The vertical track stiffness measurements were taken after construction and prior to traffic,
and at regular intervals during traffic. Table 11 gives the date of each set of measurements, and the

cumulative traffic up to each measurement.
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Table 11: Vertical Track Stiffness Schedule
Date Cumulative Traffic
(MGT)
December 14, 1990 0.0
December 18, 1990 1.255
January 22, 1991 2.253
February 6, 1991 5.109
February 19, 1991 9.832
April 1, 1991 20.427
April 29, 1991 31.660
May 28, 1991 34.153
June 5, 1991 41.442
June 12,1191 45.078
June 12, 1991 after tamp 45.078
June 17, 1991 47.678
June 23, 1991 50.869 .

Figures 16 to 26 present the load-deflection relationships for each load test on both rails for

the clay test site and Figures 27 to 37 for the natural subgrade test site.

The slope of the line between 0 and 44.5 kN gives an indication of the voids or slacks
between the ties and the ballast in the influence length of the wheel. The 44.5 kN (10 kips) load is
referred to as the seating load, and the modulus or stiffness calculated for this interval will be

referred to as the seating modulus or seating stiffness.

In most of the tests, the load deflection relationship between 44.5 kN and 178 kN was found
to be approximately linear, although in some cases stiffening was found at the maximum load range
applied. Track stiffness in the influence length of the wheel load is then based on the deflection
between 44.5 kN and 178 kN (10 to 40 kips) loads. The modulus or stiffness where the tie is in

contact with the ballast will be referred to as the contact stiffness or contact modulus.
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The deflections for each test on each rail, under the seating and maximum loads, are given
in Figures 38 to 49 for the clay section and Figures 50 to 59 for the natural subgrade section. The
vertical lines show the position of the joints in the natural subgrade section. These plots are direct

indications of the change in support conditions with increasing traffic.

Based on Figures 38 to 59, the two sections were divided into three subsections which have
inherently the same performance characteristics. These subsections contain the data that are most
suitable for analysis. The presentation of the stiffness measurements will present first all

measurements taken in the field and second only the measurements applicable to the subsections.

The clay subsection extends from tie 464 to 434. This subsection was monitored from the
beginning of the investigation. Some measurements also were taken from tie 415 to 405, but at
irregular intervals. As a result of drainage problems, this section was reconstructed; hence, these

data could not be used for the performance investigation.

The natural subgrade section was divided into two subsections, a jointed subsection and an
unjointed subsection well away from the influence of the joints. The jointed subsection extended
from tie 385 to 355 and the unjointed subsection extended from tie 339 to 325. Unfortunately the
track stiffness was not measured at 0 MGT for the natural subgrade section, and the joints in the
natural subgrade section reduced the length of track that could be used for performance comparison

with the unjointed clay section.

In summary the subsections suitable for stiffness analysis are as follows:
Clay subsection - Tie 464 to 434
Natural subgrade jointed subsection - Tie 385 to 355
Natural subgrade unjointed subsection - Tie 339 to 325
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The clay section had to be maintained at frequent intervals (see Section 10.0, Maintenance

for details). Table 12 shows the dates and traffic when each section was fully maintained.

Table 12: Maintenance Summary

Date Traffic Maintenance on:
(MGT) Clay Site Natural Jointed Natural
Site Unjointed Site

April 15,1991 | 25.699 | Surfaced, lined & | Surfaced, lined & | Surfaced, lined &

tamped tamped tamped
May 10, 1991 | 37.287 | Raised & tamped - -
May 23,1991 | 38.775 Surfaced & - -

tamped

Spot maintenance was done June 12, 1990, (45.078 MGT). Localized stiffness and unloaded

measurements were taken at these locations.

Due to the maintenance, the data will be presented over two periods: December 14, 1990,

to April 1, 1991, and April 29, 1991, to June 17, 1991.

Figure 60 and 61 indicate the change in contact deflection along the length of the subsection

during the first period, which corresponds to the first tamping cycle. The inner and outer rails are

shown separately. Figures 62 and 63 show the change in contact deflection for the second period.

The vertical lines in Figures 61 and 63 indicate the position of the joints in the natural subgrade

subsection.

To calculate the track stiffness and track modulus, the following procedure was used. The

track stiffness S for a selected load increment is given by
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where P, = final vertical rail force,
P, = initial vertical rail force,
y; = final rail elevation,

y, = initial rail elevation.

The track modulus, u, was determined using the beam-on-elastic-foundation model as given

by Zarembski and Choros® as follows:

(S)4/3
e C YR
(64EI) (5)

where E = Young's modulus of rail steel,

I = rail moment of inertia.

The average seating and contact modulus for the three subsections are shown in Figures 64,
65 and 66 for the total experiment. The corresponding variability is shown in Figures 67 to 69. The
vertical lines show when tamping took place. The plots during the second period are not connected

because full sets of load tests were not taken before and after tamping during this period.

Notice that the contact modulus increases and then decreases with cumulative tamping. The
initial increase may be due to the weather conditions and the compaction of the newly constructed

substructure. The subsequent decrease may be due to redistribution of the tie bearing support.

In all three subsections the seating modulus coefficient of variation (Figure 67 to 69) is more
than the contact modulus variation during the first period. In all the subsections, it seems as if the
modulus variation increases sharply, then decreases and thereafter either stabilizes or gradually
increases with traffic. This trend might be a result of the changes in the tie support conditions or

changes in layer properties.
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In the unjointed natural subgrade section, the trends are less clear as the variation in support
in this section is small. The unnecessary tamping of this subsection during the second period

actually caused an increase in the modulus variation over that for the first period.

5.0 DEFLECTION BASIN

The shape of the deflected track under a single wheel load (Deflection Basin) was measured using
the same loading equipment as discussed in Section 4, Vertical Track Stiffness. Deflections were
measured at the point of applied load and at the next five ties to one side of the applied load. The
deflection basin measurements were taken at the end of the experiment (50.689 MGT). The seating
basin is obtained from the deflections measured at each tie between 0 and 44.5 kN (10 kips). The
contact basin is obtained from the deflection difference at each tie between 44.5 kN and 178 kN (40
kips). Figure 70 and 71 show the seating and total deflection basins for the clay and natural subgrade

sections, respectively. Both the inner and outer rail basins are shown.

The average seating and total deflection basins for all three subsections for both the inner and
outer rail are indicated in Figure 72. Figure 73 shows the average contact basins for the subsections.

The inner and outer rail results are shown separately.

The track modulus, #, can also be calculated using the deflection basin measurements. Based
on the fact that for vertical equilibrium of forces, with the beam-on-elastic foundation model, the

integral of the supporting line force must be equal to the applied force.®

Hence.

P = f_wu y dx . ®
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If u is considered constant along the rail then Eq. (6) becomes

P =ua ,
y

where 4, is the area of the deflection basin caused by the vertical force P.

Table 13 compares the modulus calculated with Eq. 5 and Eq. 7.

(7

Table 13: Modulus Calculation Comparison
Tie No. Clay subgrade
Modulus According to Eq. 5 Modulus According to Eq. 7
Seating Contact Seating Contact
Out In Out In Out In Out In
(MPa) | (MPa) | (MPa) | (MPa) | (MPa) | (MPa) | (MPa) | (MPa)
464 6.7 19.8 14.7 29.1 6.2 15.6 12.2 21.1
458 5.2 3.7 16.2 19.8 5.3 4.3 13.2 18.5
452 5.2 5.8 12.5 22.3 5.1 9.2 10.1 18.1
444 4.1 5.2 12.5 22.3 5.6 6.0 12.1 15.8
436 6.7 2.3 13.5 11.6 5.2 2.5 11.5 9.8
430 3.4 14.7 13.5 25.3 3.8 21.8 12.6 22.0
Average: 5.2 8.6 13.8 21.7 5.2 9.9 11.9 17.5
Natural Subgrade
381 11.6 14.7 34.1 40.7 11.0 11.6 35.6 34.1
375 4.6 5.8 25.3 22.3 5.2 7.2 23.7 27.7
367 5.2 11.6 29.1 25.3 5.7 7.3 23.9 23.7
335 9.4 9.4 40.7 50.0 9.9 9.6 31.7 30.4
327 3.7 14.7 22.3 34.1 3.7 17.4 15.2 24.1
Average: 6.9 11.3 30.3 34.5 7.1 10.6 26.0 28.0

The two sets of modulus values compare reasonably well. The average seating modulus

values are about the same for the two methods. However, the average contact modulus is greater

using the single point method compared to the basin method.

By using Eq. 5, the assumption is made that the support conditions under each tie in the

influence length of the load applied are constant; using Eq. 7 this assumption is not made and so the

modulus depends on the deflected shape.
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6.0 INSITU TESTS

The thickness and relative strengths of the substructure layers for each section were determined using
the Cone Penetrometer Test (CPT) setup, as shown in Figure 74. Figures 75(a) and (b) and Figures
76(a) and (b) show each individual CPT profile in the clay subgrade section and the natural subgrade
section, respectively. The depth is measured from the top of the rail and the ballast was removed
before probing. The tip resistance measurements started in the bottom of the subballast and in some

instances in the top of the clay layer, depending on the depth of the access hole.

Figure 77 gives the combined profiles for each subsection for both the outer and inner rails.
The CPT profiles in the middle of each tie were used to represent these profiles at depths greater than

3 m (10 ft), because only the middle CPT profile went below 3 m (10 ft).

The clay layer can be distinguished clearly by its low tip resistance. The outer rail has a
distinctly harder zone in the natural subgrade underneath the clay layer. Both the natural subgrade
subsections have the same profiles with a distinctly harder layer from 0.75 m (2.5 ft) to 1.6 m (5.3
ft) below the top of rail with a softer layer starting at 1.6 m (5.3 ft) and gradually becoming harder
with further depth.

7.0 UNLOADED TRACK PROFILE

The unloaded track profiles were measured using a digital level taking elevation readings on the tip
of both rails at every 1.5 m (5 ft) along the track. The starting point of each set of measurements was
at tie 464, and the measurements continued for 30.5 m (100 ft) over the clay section up to tie 402.
The survey started again at tie 372 in the natural subgrade section at 45.75 m (50 ft) and continued
for 30.5 m (100 ft) up to tie 308. The profiles were measured before and during traffic. Table 14
gives the date of each set of measurements and the cumulative traffic up to each set. The profiles

were tied into an elevation reference system to determine the absolute settlement.
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Table 14: Unloaded Profile Schedule
Date Cumulative Traffic
MGT)
December 14, 1990 0
December 18, 1990 1.255
January 7, 1991 2.207
February 6, 1991 5.109
February 20, 1991 9.832
June 7, 1991 42.34
June 12, 1991 45.07
June 12, 1991 45.07
after tamping (partial survey) only on clay
June 17, 1991 47.678
June 17, 1991 47.678
after tamping (partial survey)
July 23, 1991 50.869

The elevation changes over both sections for all the sets of unloaded profile measurements
are indicted in Figures 78 and 79 for the clay and natural subgrades, respectively. The elevation
change is referenced to the initial elevation. The figures are plotted against both distance and tie

numbers.

Based on Figures 78 and 79, as well as Figures 38 to 59, the two sections were divided into
three similar subsections as used for the stiffness tests. The natural subgrade profile subsections
extend beyond the natural subgrade stiffness subsections. These subsections contain the data most
suitable for analysis. The presentation of the profile measurements will present first all

measurements taken in the field and second only the measurement applicable to the subsections.

The subsections for the unloaded profile measurements are as follows:
- Tie 464 to 430 for the clay subgrade subsection
- Tie 372 to 347 for the natural subgrade jointed subsection

- Tie 347 to 313 for the natural subgrade unjointed subsection
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The clay subsection is the same as the full clay section except for elimination of the disturbed
area where the drain was installed. The natural subgrade sections separate the total section surveyed

into jointed and unjointed zones.

7.1 SETTLEMENT

The track settlement was calculated relative to the initial profile measured at 0 MGT taken on
December 14, 1990. The average settlement in each total section was plotted against cumulative
traffic as shown in Figures 80 and 81 for the clay and natural subgrade, respectively. The inner and
outer rail settlements are shown separately. Figure 82 shows the settlement of each subsection

separately.

To mathematically describe the settlement rate of each section, a power function was fitted
through the average settlement determined from each set of unloaded profiles. The power function

starts at 0 settlement and 0 MGT, and rises at a rate described by a and b as follows:

y = axty (8)

where y = settlement,
x = traffic MGT,
a = scale factor,

b = shape factor.
This equation, determined from a non-linear regression (Marquardt-Levenberg algorithm)

to fit the data in Figures 80 to 82, is plotted for each set of data on the figures, and the values of the

parameters a and b are also shown on the figures.

25




7.2 ROUGHNESS

Track roughness is determined by the unevenness that occurs over a designated length of track. The
designated length may be the response length of a vehicle. A response length of a vehicle is a
wavelength that occurs in track that is long enough so that even greater wavelengths that are present

in the track can be ignored because they do not influence the vehicle response.

To remove the long wavelength components from the measured elevations a "boxcar filter"
can be used.® A boxcar filter calculates the mean of all the elevations in the response length under
consideration. The deviation of the point in the center of the response length is calculated by

subtracting the mean elevation from the elevation of the center point.

For the TLTM, the response length was taken as 12.2 m (40 ft) and the measurement

spacings were 1.5 m (5 ft). The unevenness of a section of track was determined as follows:

©)

where R =roughness,
n = number of observations in subsection, and

d;= deviations as calculated above.

Figures 83 and 84 show the relationship of roughness to traffic for both sections, and Figure

85 shows the relationship for each subsection.
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To mathematically describe the increase in track roughness with traffic for each section, the

following modification of Eq. 8 may be used:
y = rtax b ’ (10)

where r = initial roughness (0 MGT)

8.0 TRACK RECORDING CAR

The track geometry at FAST was measured using a Plasser EM80 recording car. The mid-chord
ordinate readings were taken over 9.5 m (31 ft) chord length every 300 mm (12 in.) along the rail.
Mid-chord ordinate measurements over 9.5 m (31 ft) will be referred to as "top."” Versine and cant
measurements also were obtained.® The top mid-chord values were corrected to an 18.9 m (62 ft)
base length. These measurements will be referred to as "profile” measurements. Figure 86 shows

the geometry car axle configuration.

Table 15 gives the date of each measuring run and the cumulative traffic up to the date of

each measuring run.

Figures 87 to 96 show the top measurements (31 ft chord) for both sections extending from
tie 298 to 481. Figures 97 to 106 show the profile measurements (62 ft chord) for both sections over

the same tie positions.
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Table 15: Geometry Measuring Schedule

Cumulative Traffic

Date

MGT)

December 14, 1990 0.0 -
December 18, 1990 1.255
January 4, 1991 2.207
February 6, 1991 5.109
February 14, 1991 8.543
March 4, 1991 13.330
April 2, 1991 20.427
April 10, 1991* 23.721
May 7, 1991* 35.880
May 24, 1991 38.989
June 7, 1991* 42.340
June 12, 1991 45.078
June 18, 1991 48.653

* Data not yet received

Track roughness, as measured by the recording car, was calculated from Eq. 9, using for the
deviation, d,, the mid-chord top measurements; i.e., no filter is applied to the data. Figures 107 and

108 show the change in roughness calculated from the top measurements for the clay and natural

subgrade sections. Figure 109 shows the change in roughness for each subsection.

This technique for calculating roughness filters out waves with lengths equal to half the chord

length and measures double the amplitude for waves with lengths equal to the recording car chord

length.
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9.0 TRACK LOADING

To measure the distribution of the wheel loads exerted onto a track, a set of axles loaded at 347 kN
(78 kips) per axle or 173.5 kN (39 kips) per wheel was instrumented to measure the load when
moving at 64 km/h (40 mph). At each wheel, the vertical and lateral loads were measured to 50
MGT. Figures 110 to 113 show the vertical and lateral wheel load distribution for each instrumented
wheel. The average vertical wheel load and the static wheel load are indicated with horizontal lines

in each figure.

At the time of testing, the HAL train normally consisted of 60 to 70 four-axle cars weighing
143 ton (315,000 1b) being pulled by four or five 4-axle 120-ton (264,000 1b) locomotives. The
cumulative traffic over the sections, against days since the start of the experiment, December 14,

1990, is shown in Figure 114.

10.0 MAINTENANCE

Hand maintenance was performed as required at localized spots, but when the track geometry
exceeded the FRA Class 4 standards, the section was lined and surfaced using a Canron Electromatic
tamper. The various maintenance inputs during the experiment are given in Tables 16 and 17.
Figure 115 shows the difference in the maintenance input required between the clay and the natural

subgrade sections.

11.0 SUMMARY AND CONCLUSIONS

A trial test section was constructed to determine the feasibility of achieving a low track modulus
using a soft clay layer. The low track modulus test section at FAST was desired as a contrast to the
high track modulus on the natural FAST subgrade to provide information on the effect of track

modulus on track performance.
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Table 16: Clay Subgrade Maintenance Input

Date Traffic | Work Performed Ties Maintenance
Inner Outer | Spot | Mechanized
(MGT) (Number of ties)
Feb. 20, 1991 9.832 Lined track 430-418 | 430418 | 12
April 10,1991 | 23.721 Raise and tamp 440 1
April 15,1991 | 25.699 Surface & tamp | 464-404 | 464-404 60
May 5, 1991 34981 Raise and tamp | 430-400 | 430-400 | 30
May 9, 1991 37.278 Raise and tamp 429 1
May 10, 1991 | 37.638 Raise and tamp 460-410 | 50
May 23,1991 | 38.775 Raise and tamp | 464-404 | 464-404 60
(after drain
installation)
May 24, 1991 | 38.989 Raise and tamp | 425-400 | 425-400 | 25
June 12,1991 | 45.078 Raise and tamp | 406-401 | 413-408 | 11
432-420
June 17,1991 [ 47.678 Lined track 432-408 | 432-408 | 24
Total: | 154 120
Table 17: Natural Subgrade Maintenance Input
Date Traffic Work Ties Maintenance
Performed Inner | Outer | Spot | Mechanized
(MGT) (Number of ties)
Feb. 13, 1991 7.812 Raise and tamp 380 1 W
Feb. 25, 1991 11.178 Raise and tam 355 1
March 28, 1991 | 20.022 | Raise and tamp 380 1
April 4, 1991 22.358 | Raise and tamp 357 1
April 10, 1991 24.131 Raise and tamp 355 1
April 15, 1991 25.699 | Surface & tamp | 385-325 | 385-325 60
May 6, 1991 34981 | Raise and tamp 355 1
May 23, 1991 38.775 | Raise and tamp 356 1
June 7, 1991 42340 | Raise and tamp 355 1
June 17, 1991 47.678 | Raise and tamp 355 1
Total:| 9 60
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The low track modulus condition was obtained by excavating a 1.52 m (5 ft) deep trench 30.5
m (100 ft) long in the natural subgrade, and then filling the trench with soft clay. Details of the
design and construction are given in the report along with information on the properties of the track

components.

Vertical track stiffness was determined at various intervals of traffic by measuring the rail
deflections corresponding to a range of applied loads. The load-deflection relationship was nearly
linear initially but became progressively curved with increasing traffic. The portion of the curve
below a load of 44.5 kN (10 kips) is believed to represent the extent of voids or slack between the
tie and ballast. The track modulus or stiffness corresponding to this load range is termed the seating
modulus or stiffness. The portion of the curve from a load of 44.5 kN (10 kips) to a load of 178 kN
(40 kips) was approximately linear and represents the track stiffness with the slack removed. This

track modulus or stiffness is termed the contact modulus or stiffness.

The contact track modulus of the clay stiffness clay section was about 50 percent of that for
the adjacent section with the natural stiff subgrade. Because the only significant difference between
the two sections is the upper 1.52 m (5 ft) of subgrade, the difference in modulus was caused by the

difference in the upper subgrade.

Rail deflection basins were measured under the seating and maximum verical loads. The

basin was observed to extend 2.5 m (8.2 ft) each side of the load point.

CPT's were conducted to obtain profiles of subgrade strength and stiffness. The profiles in
the low track modulus section showed the soft clay layer. The CPT appeared to be a useful method

for representing the subgrade effect on track modulus.

Unloaded vertical track profiles were measured by top of rail level surveys. These were
obtained initially and at periodic traffic intervals. From these profiles, the average track settlement
with traffic was calculated. Within a tamping cycle for both the clay and the natural subgrade

sections, settlement increased at a decreasing rate with increasing traffic. After the first 20 MGT of
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traffic, the average settlement in the clay section was about 60 percent higher than in the natural

subgrade section.

Track roughness was calculated from both filtered survey data and track geometry car data.
Within a tamping cycle, roughness increased almost linearly with increasing traffic in the clay
subgrade section, but at a diminishing rate in the natural subgrade section. After the first 20 MGT
of traffic, the roughness in the clay section was 60 percent to 90 percent greater than that in the

natural subgrade section.

Considerably more tamping was required for the clay section than for the natural subgrade

section. However, the clay subgrade did not fail during 50 MGT of traffic.

Ballast samples were taken after 50 MGT of traffic. More ballast breakdown appeared to
occur in the clay section than in the natural subgrade section. However, because the initial

gradations were not obtained, this observation is uncertain.

This study showed that the test section constructed using an imported clay layer was
successful in achieving the desired low track modulus. The study further showed that the low track
modulus section performance was very different from that of the higher modulus natural subgrade

section.
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Figure 30: Natural Section Stiffness Test 6 February 1991
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Figure 31: Natural Section Stiffness Test 19 February 1991

65




Load (kN) Load (kN) Load (kN) Load (kN) Load (kN)

Load (kN)

175
140
105
70
35

175
140
105
70
35

175
140
105
70
35

175

140
105

NATURAL SUBGRADE TLTM 1 APRIL 1991

20.427B MGT MGT
o Quter Rail e Inner Rail

AV R
SV NS

;
] NErA Ry /7
| {/ %/]/./ —

L

1/;/ | | —f%{
J/ J// T // :

/ 377 375 —— 373 — 371 o
- [ | | ! | | ] | ! |
I ] T ] N | —

// RN/ WA
RSN Y/ AT A

/]

- -
L 1 / __// N /. / i

T T T ; T
335 333
| | | L [ L |

¢ I I ] ] 1 1 —

) ~
L
[

327 325 —

L o L1 o | 4]
0O 2 4 o6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 10

Deflection (mm) Deflection {mm) Deflection (mm) Deflection (mm)

Figure 32: Natural Section Stiffness Test 1 April 1991

66




Load (kN) Load (kN) Load (kN) Load (kN) Load (kN)

Load (kN)

NATURAL SUBGRADE TLTM 29 APRIL 1991
31.660 MGT MGT

o Quter Rail e |nner Rall
175 F 1 | | I
ol
ol [ ]
70 -
/ / 385

S
s A

175 F bd |

[ | [
140 L / -
105 - -
70 // -
35 _/ 369 _|
| | | |

175 1 (—
140 | ?ﬁ -
105 .
70—/ s
35 - 361

/

175 &+t
140 - .
105 -
70—// :
35 = 339
/I | | |

175 /1 1 | -
140 —- —
105 + —

70 / -
35 - 331 329 - 327 325 -
/| L1 /\ I B I I B L1 1

0
O 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 10

Deflection (mm) Deflection (mm) Deflection (mm) Deflection (mm)
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Figure 52: Running Deflection 6 February 1991
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Figure 53: Running Deflection 19 February 1991
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Figure 60: Clay Subgrade Contact Deflection for Period 1
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Figure 61: Natural Subgrade Contact Deflection for Period 1
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Figure 63: Natural Subgrade Contact Deflection for Period 2
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Figure 67: Variation in Modulus for Clay Subgrade
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Figure 72: Average Seating and Total Deflection Basins
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Figure 107: EM80 Roughness Clay Section
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Figure 109: EM80 Top Roughness Subsections
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Figure 110: Wheel Load Measurements Front Inner Wheel
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Figure 111: Wheel Load Measurements Front Outer Wheel
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Figure 112: Wheel Load Measurements Rear Inner Wheel
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Figure 113: Wheel Load Measurements Rear Outer Wheel
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Figure 114; Cumulative Traffic
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